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Abstract: We address the control synthesis of hybrid systems with discrete inputs, disturbances and
outputs. The control objective is to ensure that the events of the closed-loop system belong to the
language of the control requirements. The controller is sampling-based and it is representable by a finite-
state machine. We formalize the control problem and provide a theoretically sound solution. The solution
is based on solving a discrete-event control problem for a finite-state abstraction of the plant. We propose
a specific construction for the finite-state abstraction. This construction is not based on discretizing the
state-space, but rather on converting the continuous-time hybrid system to a discrete-time one based on
sampling. The construction works only for a specific class of hybrid systems. We describe this class of
systems and we provide an example of such a system, inspired by an industrial use-case.
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1. INTRODUCTION
Motivated by applications in the area of high-tech systems,
in particular control of printers, Petreczky et al. (2008b), we
are interested in the following control problem. The plant is
a continuous-time hybrid system which is subject to discrete
disturbances and control inputs and which generates discrete
outputs and internal events. The disturbances are imposed by
the environment and the control inputs can be used to influence
the system behavior. The desired controller can read the outputs
and it generates control inputs. Furthermore, the controller
should be realizable by a finite-state machine, and it is activated
at equidistant sampling times with sampling rate ∆. The control
objective is to ensure that the sequences of internal events
generated by the plant satisfy the control requirements.
Contribution We present a mathematical formulation of the
control problem above. We also propose the following solution.

Step 1 Compute an abstraction (over-approximation) of the
symbolic (event) behavior of the plant, such that the ab-
straction has a finite-state representation. This abstraction
is based on transforming the original system to a discrete-
time one. The states of the abstraction are those states of
the hybrid system which can be reached at sampling times.
Under suitable assumptions, the thus obtained state-space is
finite.

Step 2 Solve the related discrete-event control problem for
the finite-state abstraction. The solution is a discrete-event
controller representable by a Moore-automaton. Interpret the
solution as a controller for the original plant.

We prove that the procedure above is theoretically sound. The
discrete-event control problem of Step 2 can be solved using
game theory, see Grädel et al. (2002) or, under additional as-
sumptions, using classical supervisory control, see Petreczky
et al. (2008a). We also present a procedure for constructing a
finite-state abstraction. The procedure can be made effective,
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but it may be computationaly expensive. The finite-state ab-
straction can be computed only for a specific class of hybrid
systems which satisfies the following properties; (1) distur-
bances or internal events do not influence the continuous dy-
namics, (2) output events do not influence the system dynamics,
(3) only finitely many events are generated on any time interval,
(4) the set of states reachable at sampling times is finite. For
the last property we present sufficient conditions in terms of
existence of a Lyapunov-like function. While these assumptions
are strong, there are hybrid systems of practical relevance (see
Petreczky et al. (2008b) and the example of this paper) for
which they hold.
Related work To the best of our knowledge, the contribution
of the paper is new. Control of hybrid systems using finite-
state approximation is a classical topic, Alur et al. (2000);
Gonzalez et al. (2001); Chutinan and Krogh (2003); Förstnera
et al. (2002); Moor et al. (2002); Koutsoukos et al. (2000).
The main difference with respect to Gonzalez et al. (2001);
Chutinan and Krogh (2003); Koutsoukos et al. (2000) is the
presence of partial observations, that the generation of events is
not synchronous with inputs, and that the hybrid plant contains
reset maps. With respect to Förstnera et al. (2002); Moor et al.
(2002) the main differences are that we consider hybrid systems
as opposed to continuous ones, and we address partial observa-
tions. In addition, we do not propose a general purpose finite-
state abstraction, rather the proposed abstraction is intended as
a vehicle for solving the specific control problem. The results of
Raisch and O’Young (1995); Moor and Raisch (1999); Raisch
(2000) address a problem which is quite different from the one
considered in this paper. The approach of the paper resembles
Alur et al. (2000); Tabuada and Pappas (2005); Fainekos et al.
(2007); Belta et al. (2005). However, the abstraction notion of
this paper and the problem formulation are different. The con-
trol problem of this paper is different from Philips et al. (2003).
In addition, the computation of the finite-state abstraction pro-
posed in this paper is quite different from that of the papers



cited above. In Chutinan and Krogh (2003); Koutsoukos et al.
(2000); Alur et al. (2000); Fainekos et al. (2007); Belta et al.
(2005); Philips et al. (2003) the finite-state abstraction is com-
puted by dividing the state-space of the system into regions. In
Förstnera et al. (2002); Moor et al. (2002); Raisch and O’Young
(1995); Moor et al. (2002); Moor and Raisch (1999); Raisch
(2000), the abstraction of the system is constructed by storing
the output (or state) response of the system to input sequences
of finite length. In contrast, here the abstraction is obtained by
sampling the hybrid system in time, not by discretizing it in
space. In particular, the abstraction lives on the same state-space
as the original system.
Outline of the paper In §3 we state the control problem
we want to solve. The reduction of the hybrid problem to a
discrete-event one is discussed in §4. In §5 the class of hybrid
systems of interest is defined and the computation of a finite-
state abstraction of the hybrid plant is discussed. In §6, as an
illustration, we present an example.

2. PRELIMINARIES
General notation We use the standard notation and terminol-
ogy from automata theory Eilenberg (1974). N is the set of
natural numbers including zero. If Σ is a finite alphabet, then
Σ∗ denotes the set of finite strings (words) on Σ. The empty
word is denoted by ε. An infinite word over Σ is an infinite
sequence w = a1a2 · · · ak · · · with ai ∈ Σ, i ∈ N. The set of
infinite words is denoted by Σω. The length of a (in)finite word
is denoted by |w|; if w is an infinite word, then |w| = +∞.
For any (in)finite word w, and for any i ∈ N (in case w is finite
word, for any 0 ≤ i ≤ |w|), w1:i denotes the finite word formed
by the first i letters of w, i.e. w1:i = a1a2 · · · ai. If i = 0, then
w1:i is the empty word ε. The set of non-negative reals is R+.
Moore-automata A Moore-automaton (Eilenberg (1974)) is a
tuple A = (Q, I, Y, δ, λ, q0) where Q is the finite state-space, I
is the input alphabet, Y is the output alphabet, δ : Q× I → Q
is the state-transition map, λ : Q → Y is the readout map,
and q0 ∈ Q is the initial state. The Moore-automaton A is a
realization of a map φ : I∗ → Y , if for all w = u1u2 · · ·uk ∈
I∗, k ≥ 0 and u1, u2, . . . , uk ∈ I , φ(w) = λ(qk) where
qi = δ(qi−1, ui) for all i = 1, 2, . . . , k.
Monoid automata Recall from Berstel (1979); Eilenberg
(1974) that a monoid M is a semi-group with a unit element.
A finite-state automaton on a monoid M , abbreviated as DFA,
is a tuple T = (Q,M,E, F, q0) where Q is a finite set of
states, M is the monoid of inputs, E ⊆ Q × M × Q is a
state-transition relation, where E is a finite set, F ⊆ Q is the
set of accepting states, q0 ∈ Q is the initial state. An element
m ∈ M is accepted by T if there exists mi ∈ Mi and qi ∈ Q,
i = 1, 2, . . . , k, k ≥ 0 such that (qi,mi+1, qi+1) ∈ E for
i = 0, 1, . . . , k − 1, qk ∈ F and m = m1m2 · · ·mk. The
set L ⊆ M is recognized by T , denoted by L(T ), if L consists
of precisely those elements m ∈ M which are accepted by T .
Sequential input-output maps will be used to model the
discrete-event abstractions of hybrid systems. The concepts
below are discussed in more detail in Petreczky et al. (2008a).
Definition 1. A multi-valued map R : Σ∗ → 2X∗×Y ∗

is called
a sequential input-output map, if
(1) R(ε) = (ε, ε), and for all s ∈ Σ∗, R(s) is a non-
empty set. Furthermore, R is length-preserving in its X-valued
component, i.e. if (x, y) ∈ R(s), with x ∈ X∗ and y ∈ Y ∗,
then the length of s and x are the same, i.e. |s| = |x|,
(2) R is prefix preserving, i.e. for each word s ∈ Σ∗ and letter
a ∈ Σ, if (x, y) ∈ R(sa), then there exist x ∈ X and y ∈ Y ∗,

x̂ ∈ X∗, ŷ ∈ Y ∗ such that x = x̂x, y = ŷy and (x̂, ŷ) ∈ R(s),
(3) R is non-blocking, i.e. for each s ∈ Σ∗, a ∈ Σ, (x, y) ∈
R(s), (xx, yy) ∈ R(sa) for some x ∈ X , y ∈ Y ∗.

Definition 2. A DFA T = (Q,M,E, F, q0) defined over the
monoid M = Σ∗ × X∗ × Y ∗ is called a quasi-sequential
transducer, if (1) F = Q, i.e. all states are accepting, (2) the
state-transition relation E is a partial map E : Q × Σ × X ×
Y ∗ → Q, (3) for each state q ∈ Q and letter a ∈ Σ there exist
x ∈ X and y ∈ Y ∗ such that E(q, u, x, y) is defined.
Definition 3. The sequential input-output map R : Σ∗ →
2X∗×Y ∗

is quasi-recognizable, if there exists a quasi-sequential
transducer which recognizes the graph of R, i.e. which recog-
nizes the set {(u, x, y) ∈ Σ∗ ×X∗ × Y ∗ | (x, y) ∈ R(u)}.

3. CONTROL PROBLEM

The plant of interest is a hybrid system which reacts to discrete-
valued control inputs and disturbances, and generates discrete-
valued outputs and internal events. We view the inputs and
outputs as discrete events. Thus, the control inputs are events
generated by a potential controller, the disturbances are events
generated by the environment. The outputs and internal events
are events generated by the plant. The only difference between
outputs and internal events is that outputs are visible (i.e.
detectable by sensors), while internal events are not.
Notation 1. (Plant and events). We denote the plant by H . We
denote by Ec the set of control inputs, Ed the set of distur-
bances, Eo the set of outputs, Ei the set of internal events. We
assume that Ec, Ed, Eo, Ei are finite sets.
In order to define the input-output behavior of the plant for-
mally, we need the following notion.
Definition 4. Let E be a finite set and let ⊥ /∈ E. Consider a
(in)finite timed sequence of elements of E.

s = (e1, t1)(e2, t2) · · · (ek, tk) · · · (1)
where 0 ≤ t1 < t1 < t2 < · · · , ei+1 ∈ E, ti+1 ∈ R+ for
i ∈ N, i < |s|. Here |s| is the length of s, and |s| = +∞ if
s is an infinite sequence. If |s| = +∞, then we assume that
supi∈N ti+1 = +∞. We can identify s with a map

g : R+ 3 t 7→
{

ei+1 ∈ E if t = ti+1 for some i ∈ N
⊥ otherwise (2)

The map g above, is called a time-event map. The set of all such
maps is denoted by PE . Denote the sequence of elements of E
induced by g by UT(g) = e1e2 · · · ek · · · ∈ E∗ ∪ Eω.
I.e., the timed-event function g takes values in the event set
E at isolated time instances, and the value ⊥ encodes the
absence of events at a certain time instance. By applying the
above definition to E ∈ {Ec, Ed, Eo, Ei}, we obtain the sets
PEc , PEd

, PEo , PEi describing the time signals with values in
inputs, disturbances, outputs and internal events respectively.
Definition 5. (Input-output map of the plant). The input-output
map of H is a causal 2 map υH : PEc

× PEd
→ PEo

× PEi
.

Definition 6. A hybrid controller is a map C : PEo
→ PEc

.
We study controllers which have a finite-state representation
and are activated at fixed sampling rate ∆ > 0. The controller
can only detect the set of outputs which occurred in a sampling
interval. The formal definition is as follows.
2 By causality of υH we mean that the response of υH depends only on the
past inputs and on the past and present disturbances, i.e. for any ui ∈ PEc

di ∈ PEd
, (oi, ôi) = υH(ui, di), i = 1, 2, if d1|[0,t] = d2|[0,t], u1|[0,t) =

u2|[0,t) then o1(t) = o2(t) and ô1(t) = ô2(t), for all t ∈ R+.
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Definition 7. Let U = Ec ∪ {⊥} be the sampled input set, let
O = 2Eo be the sampled output set. A sequential controller is
a map φ : O∗ → U which has a Moore-automaton realization.

The desired hybrid controller is then a hybrid controller asso-
ciated with a sequential controller and it is defined as follows.
Definition 8. (Sampling-based controller). For a sequential con-
troller φ let the hybrid controller Cφ : PEo → PEc associated
with φ be such that for all o ∈ PEo , and for all t ∈ R+,

Cφ(o)(t) =

{
φ(S1S2 · · ·Sk+1) if t = (k + 1)∆ for a k ∈ N

φ(ε) if t = 0
⊥ otherwise

where Sk+1 = o((k∆, (k + 1)∆]) ∩ Eo for all k ∈ N.
Next, we define the relevant aspects of the closed-loop behavior
of the system. First, in order to avoid technical difficulties, we
restrict attention to disturbances where at most a fixed µ number
of disturbance events occurs within a sampling interval.
Definition 9. Let µ ∈ N be the upper bound on the number of
disturbances in a sampling interval. Denote by P∆

Ed,µ the set of
functions g ∈ PEd

such that on any interval (i∆, (i + 1)∆],
i ∈ N the number of events of g is not greater than µ, i.e.
card{e = g(s) ∈ Ed | s ∈ (i∆, (i + 1)∆]} ≤ µ.
Definition 10. Let φ be a sequential controller and let Cφ be
the asscociated hybrid controller. The closed-loop language
L(H/Cφ) be the set of (in)finite words of the form UT(ô) ∈
E∗

i ∪ Eω
i , where ô ∈ PEi and there exist u ∈ PEc , d ∈ P∆

Ed,µ,
and o ∈ PEo such that (o, ô) = υH(u, d) and u = Cφ(o).

That is, L(H/Cφ) is the set of sequences of internal events gen-
erated by the interconnection of the plant H with the controller
Cφ. The control problem of interest can be stated as follows.
Problem 1. (Sampled-data control). For a specification language
K ⊆ E∗

i ∪ Eω
i , find a sequential controller φ such that for the

closed-loop language satisfies L(H/Cφ) ⊆ K.
Note that the results of the paper can easily be extended so that
the specification language includes events from Ec ∪Ed ∪Eo.

4. SOLUTION OF THE HYBRID CONTROL PROBLEM

In this section we present the solution of Problem 1. The main
idea is to reduce Problem 1 to a discrete-event control problem.
To this end, we model the sampled-data behavior of the plant
as a discrete-event system RH , which reacts to sampled inputs
from U and sampled disturbances from D (to be defined below)
and generates sampled outputs from O and sequences internal
events. In order to define RH , we need the following.
Definition 11. The set sampled disturbances of RH is defined
as D =

⋃µ
k=0 Ek

d , where µ is as in Definition 9.

That is, D is the set of all words over Ed of length at most µ.
Notation 2. Let g ∈ PE be a time-event function. For all
t ∈ R+, let UT(g, t) ∈ E∗, be the sequence of events of g
up to t, i.e. UT(g, t) = UT(gt), where gt ∈ PE is such that
gt(s) = g(s) if s ≤ t and gt(s) = ⊥ for all s > t

Definition 12. The sequential input-output map RH of H is
the map RH : (U × D)∗ → 2O∗×E∗o defined as follows.

RH(ε) = {(ε, ε)} and for each sequence of sampled inputs
u1, u2, . . . , uk ∈ U and disturbances d1, d2, · · · dk ∈ D, k ≥ 0,

(o1o2 · · · ok, ô) ∈ RH((u1, d1)(u2, d2) · · · (uk, dk))
for some o1, o2, . . . , ok ∈ O, and ô ∈ E∗

i , if there exist
g ∈ PEd

, o ∈ PEo
, ô ∈ PEi

such that (o, ô) = υH(u, g),

∀t ∈ R+ : u(t) =
{

ui if t = (i− 1)∆ for i = 1, 2, . . . , k
⊥ otherwise

ô = UT(ô, k∆), and oi = o(((i− 1)∆, i∆]), di = UT(gi,∆),
where gi(t) = g(t+(i−1)∆),∀t ∈ R+, for all i = 1, 2, . . . , k.

RH is a sequential input-output map of Definition 13. Intu-
itively, RH is the result of composing H with the interfaces
converting time-event functions from PEo

, PEi
, P∆

Ed,µ, to se-
quences in O∗, E∗

i and D∗, and with the interface which con-
verts sequences from U∗ to maps PEc .

In order to solve Problem 1, we can view RH as a discrete-
event plant, and solve a discrete-event control problem for RH

as a plant and K as a requirement. The discrete-event control
problem is as follows.
Definition 13. A discrete-event plant is a sequential input-
output map R : (U ×D)∗ → 2O∗×E∗i .
Definition 14. The closed-loop language L(R/φ) ⊆ E∗

i ∪
Eω

i of the interconnection of R with the sequential controller
φ : O∗ → U is the set of all words ô ∈ E∗

i ∪ Eω
i for which

there exist di ∈ D, oi ∈ O, ui ∈ U , i = 1, 2, . . ., and indices
k1 ≤ k2 ≤ · · · ki ≤ such that supi∈N ki+1 = |ô|, and ∀i ∈ N,
(o1o2 · · · oi+1, ô1:ki+1

) ∈ R((u1, d1)(u2, d2) · · · (ui+1, di+1))
ui+1 = φ(o1o2 · · · oi) if i > 0, and u1 = φ(ε)
Problem 2. (Discrete control problem). For the plant R, and
for the control requirements K ⊆ E∗

i ∪ Eω
i , find a sequential

controller φ such that L(R/φ) ⊆ K holds.
Theorem 1. (Hybrid vs. discrete control). If φ is a sequential
controller, then L(H/Cφ) ⊆ L(RH/φ). Hence, if φ solves
Problem 2 for R = RH , and K ⊆ E∗

i ∪Eω
i , then the associated

hybrid controller Cφ solves Problem 1 for H and K.

For more details on the solution of Problem 2, see Petreczky
et al. (2008a). A necessary condition for effective solution of
Problem 2 is that R is quasi-recognizable, i.e. it is recognized
by a quasi-sequential transducer. However, RH need not be
quasi-recognizable. The remedy is to solve Problem 2 not
for RH but for an quasi-recognizable abstraction of RH . The
construction of the latter is discussed in §5.
Definition 15. (Abstraction). The sequential input-output map
R is an abstraction of the map RH if for all s ∈ (U ×D)∗, the
inclusion RH(s) ⊆ R(s) holds.
Theorem 2. Assume that R is an abstraction of RH . Then for
any sequential controller φ, L(RH/φ) ⊆ L(R/φ). Hence, if φ
solves Problem 2 for R, then φ solves Problem 2 for RH .
Hence, in order to solve Problem 1, we have to compute a quasi-
recognizable abstraction R of RH as described in §5, and then
solve the discrete control problem Problem 2 for R.

5. FINITE-STATE ABSTRACTION OF RH

First we define the hybrid systems of interest.
Definition 16. (Hybrid systems of interest). A discrete i/o hy-
brid system H is a tuple

(SH , δ, λi, λo, {fq, Ru,q,Φq,e}q∈Q,u∈Ec,e∈Ei∪Eo , h0) (3)



• Events Ed is the set of disturbances, Ec is the set of
control inputs, Eo is the set of outputs, Ei is the set of
internal events, and Ec, Ed, Ei, Eo are finite sets.

• State-space SH = Q × X is the state-space of H . Here
Q = Qc×Qd is the discrete state-space of H , Qc, Qd are
finite sets. The set X ⊆ Rn is the continuous state-space,
X is a closed set with non-empty interior int X 6= ∅.

• Discrete-state transition is determined by the transition
functions δc : Q× Ec → Qc, δd : Q× (Ed ∪ Ei) → Qd.

• Continuous dynamics is determined by vector fields fqc :
Rn → Rn, q ∈ Qc, and reset maps Ru,q : X → X , q ∈ Q
and u ∈ Ec. The vector fields fqc , qc ∈ Qc are continuous
and globally Lipschitz.

• Event generation is determined by guards Φq,e ⊆ X ,
q ∈ Q, e ∈ Eo ∪ Ei, and by discrete partial readout maps
λo : Q× Ed → Eo, λi : Q× Ed → Ei.

• h0 = (qc
0, q

d
0 , x0) ∈ SH is the initial state of the system.

Moreover, x0 ∈ int X , i.e. x0 is in the interior of X .

The system H is a hybrid system in the sense of van der Schaft
and Schumacher (2000), subject to the following restrictions.
Consider a discrete state q = (qc, qd) ∈ Q If an event
u ∈ Ec arrives, then the Qc-valued state component changes
to δc(q, u). If e ∈ Ed ∪ Ei occurs, then the Qd-valued discrete
state component changes to δd(q, e). For an event from Eo the
discrete state does not change. The continuous dynamics in q
is determined by the differential equation ẋ = fqc(x), as long
as the continuous state is in the interior of X . As soon as the
continuous state reaches the boundary, it will change only if a
reset map is applied. The reset maps for an event u ∈ Ec are
specified by Ru,q. For all the events from Ed ∪ Eo ∪ Ei, the
reset maps are the identity. An event e ∈ Eo ∪ Ei is generated
either if the continuous state crosses a guard set Φq,e or when
an event from d ∈ Ed arrives. In the latter case, e = λi(q, d)
or e = λo(q, d). Events from Ec ∪ Ed are generated by the
controller/environment. For the formal definition of the state
evolution, we need the following.
Definition 17. (Flow of fqc ). For any time t ∈ R+ and for any
qc ∈ Qc define the flow f t

qc : X → X of fqc as follows.
Consider the solution of the differential equation ż = fqc(z)
with the inital state z(0) = z0. Define

f t
qc(z0) =

{
z(t) if t < β(qc, z0)
z(β(qc, z0) if β(qc, zo) ≤ t < +∞

where β = β(qc, z0) ∈ [0,+∞] is such that for all t ∈ [0, β),
z(t) ∈ int X and if β < +∞, then z(β) ∈ ∂X , i.e. z(β)
belongs to the boundary of X .

Notice that for any z0 ∈ ∂X , f t
qc(z0) = z0, i.e. the continuous

state evolution stops on the boundary of X . The following
assumptions will be used in the rest of the paper.
Assumption 1. A.1. For any Σ ∈ {Eo, Ei} and q ∈ Q, ∀e1 6=

e2 ∈ Σ : Φq,e1 ∩ Φq,e2 = ∅.
A.2. For each q = (qc, qd) ∈ Q = Qc×Qd, e ∈ Eo ∪Ei there

exist smooth maps hq,e : Rn → R, such that
Φq,e ⊆ {x ∈ int X | hq,e(x) = 0}, and
if Φq,e 6= ∅, then ∀x ∈ Rn : grad(hq,e)(x)fqc(x) > 0.

A.3. For any q ∈ Q, d ∈ Ed, λi(q, d) is defined. Moreover, if
e = λi(q, d), then for any q̂ ∈ Q, Φq̂,e = ∅.

Assumption A.1 ensures that at most one output and at most
one internal event is generated at any time instance. Assumption
A.2 requires each guard set to be a subset of a hyper-surface. In
addition, the vector field associated with the discrete state has to

be transversal with respect to the hyper-surface. This is a strong
condition, but we believe it will be satisfied for a fairly large
class of systems, for instance models of production systems
and paper processing machines such as printers. Assumption
A.2 ensures that only a finite number of outputs or internal
events are generated on any finite time interval. Assumption
A.3 allows to recognize whether an internal event is generated
by a discrete readout map or by crossing a guard. Next, we
define the state and output evolution of H .
Definition 18. For any state h = (qh, xh), qh = (qc

h, qd
h), input

u ∈ PEc and disturbance d ∈ PEd
, the state-trajectory is a map

ξH(h, u, d) : R+ 3 t 7→ (q(t), x(t)) ∈ SH

where q(t) = (qc(t), qd(t)) ∈ Q, qd(0) = qd
h, qc(0) = qc

h
and x(0) = xh if u(0) = ⊥, qc(0) = δc(qh, u(0)) and
x(0) = Ru(0),qh

(xh) if u(0) ∈ Ec, and ∀t ∈ R+, t > 0

qc(t) =
{

δc(q(t−), u) if u = u(t) ∈ Ec

qc(t− r) if ∃r > 0 : u((t− r, t]) = {⊥}

qd(t) =



qd(t) = δd(q(t−), e) if d(t) = e ∈ Ed, or d(t) = ⊥
and x(t−) ∈ Φq(t−),e, e ∈ Ei

qd(t) = qd(t− r) if ∃r > 0 : ∀s ∈ (t− r, t] :
d(s) = ⊥, u(s) = ⊥ and
x(s) /∈

⋃
e∈Ei

Φq(t−r),e

x(t) =
{

Ru,q(t−)(x(t−)) if u(t) = u ∈ Ec

fr
qc(t)(x(t− r)) if ∃r > 0 : u((t− r, t]) = {⊥}

Here q(t−), x(t−) are the left-hand side limits at t of q(t), x(t).
Definition 19. The input-output map of H induced by state
h ∈ SH is defined as

υH,h : PEc × PEe 3 (u, d) 7→ (o, ô) ∈ PEo × PEi

where o(0) = ⊥, ô(0) = ⊥ and for t > 0,

o(t) =


e ∈ Eo if x(t−) ∈ Φq(t−),e and d(t) = ⊥,

λo(q(t−), d(t)) if d(t) ∈ Ed,
and λo(q(t−), d(t)) is defined

⊥ otherwise

ô(t) =

 e ∈ Ei if x(t−) ∈ Φq(t−),e and d(t) = ⊥,

λi(q(t−), d(t)) if d(t) ∈ Ed

⊥ otherwise
where ξH(h, u, d)(t) = (q(t), x(t)). We denote by υH the
input-output map υH,h0 induced by the initial state h0 of H .

Informally, if there are no disturbances, then an output or
internal event is generated if the continuous state crosses a
guard. If a disturbance arrives, then an output (resp. internal
event) is generated according to the readout map λo (resp. λi).

Construction of a finite-state abstraction of RH Next, we
present the definition of the quasi-sequential transducer, which
recognizes an abstraction of RH . In the sequel H is a hybrid
system from Definition 16 satisfying Assumption A.1– A.3.
Definition 20. Let R(H) =

⋃∞
i=0 Q×Hi be such that

H0 = {x0} and Hi+1 = Hi ∪ {f∆
qc(x), f∆

qc(Ru,s(x)) | x ∈ Hi,

qc ∈ Qc, s ∈ Q, u ∈ Ec},∀i ∈ N
where x0 is the continuous component of the initial state of H .
Assumption 2. In the sequel we assume that R(H) is finite.
R(H) will be the state-space of the to be constructed ab-
straction. Later on we formulate conditions for finiteness of
R(H). The main idea behind the construction of the sampled-
time abstraction is that it is enough to look at states which are



reached at sampling times, i.e. at a subset of elements ofR(H).
Moreover, the events generated in a sampling interval can be
estimated by using the sampled state.
Definition 21. For any q = (qc, qd) ∈ Q and e ∈ Ei ∪ Eo,
the guard abstraction predicate Pq,e ⊆ X is either Pq,e = ∅, if
e = λ(q, d) for some d ∈ Ed, or

Pq,e = {x ∈ X | hq,e(x) ≤ 0 and hq,e(f∆
qc(x)) ≥ 0} (4)

Informally, Pq,e contains those continuous states, started from
which the guard corresponding to e is crossed within ∆ time.
Definition 22. Let P = {Pq,e}q∈Q,e∈Ei∪Eo the collection of
sets from Definition 21. Define the finite-state abstraction H∆

as a quasi-sequential transducer
H∆ = (R(H), (U ×D)∗ ×O∗ × E∗

i , E,R(H), h0) where
Initial state h0 = (qc

0, q
d
0 , x0) of H∆ coincides with that of H .

State transition map E : R(H)×(U×D)×O×E∗
i → R(H)

is defined as follows. For each u ∈ U , d ∈ D, o ∈ O and ô ∈
E∗

i , E(h1, u, d, o, ô) is defined and E(h1, u, d, o, ô) = h2 if and
only if hi = (qi, xi) ∈ R(H) where qi = (qc

i , q
d
i ) ∈ Qc ×Qd

and xi ∈ X , i = 1, 2, and the following holds.
(1) The state components qc

2 and x2 are defined as follows.
qc
2 = δc(q1, u) and x2 = f∆

qc
2
(Ru,q1(x1)) (5)

Here, for u = ⊥, δc(q1,⊥) = qc
1 and R⊥,q1(x1) = x1

(2) Assume that d = e1e2 · · · ek, 0 ≤ k ≤ µ, e1, e2, . . . , ek ∈
Ed. Then the sequence ô is of the form ô = z1z2 · · · zl, where
k ≤ l ≤ |Qd||Ei|+k and z1, z2, . . . , zl ∈ Ei and the following
holds. There exists a set of indices I = {i1, i2, . . . , ik} ⊆
{1, 2, . . . , l}, i1 < i2 < · · · < ik and discrete states si ∈ Q,
i = 0, 1, . . . , l such that s0 = (qc

2, q
d
1), sl = q2 and for all

i = 1, 2, . . . , l

si =

{ (qc
2, δd(si−1, zi)) if Ru,q1(x1) ∈ Psi−1,zi

and i /∈ I
(qc

2, δd(si−1, er)) if i = ir and zi = λi(si−1, er)
for some r = 1, 2, . . . , k,

(6)

(3) The output o ⊆ Eo is a subset of Eo such that for any e ∈ o,
Ru,q1(x1) ∈ Psi,e for some i ∈ {1, 2, . . . , l} \ I , or
λo(sir−1, er) = e for some r = 1, 2, . . . , k

(7)

Intuition The states of H∆ are those states of H which can be
reached from h0 at sampling times. By assumption, this set is
finite. A state transition of H∆ associated with a discrete input
u, disturbance d ∈ D, output o ∈ O and sequence of internal
events ô ∈ E∗

i is obtained as follows. If the current state of
H∆ is h1 then the new state h2,is the state of H reachable from
h1 in time ∆, under the following conditions; (1) H receives
input event u at time 0, and no input after that, (2) H receives a
disturbance g, such that the sequence of events of g on (0,∆] is
d, (3) ô is the sequence of internal events generated by H while
moving from h1 to h2, (4) o is the set of outputs generated
by H while moving from state h1 to h2. Condition (1) and
the fact that the Qc- and Rn-valued state components depend
only on the time and input events yield (5). The computation of
the Qd-valued states along with checking Condition (2) – (3) is
formalized in (6). Finally, Condition (4) is formalized in (7).
Theorem 3. The tuple H∆ is a quasi-sequential transducer, and
the sequential input-output map R(H∆) recognized by H∆ is
an abstraction of RH .
Finiteness of R(H) based on Lyapunov-like functions
Theorem 4. Consider a finite set X0 ⊆ X and a smooth map
V : X → R such that for all x ∈ X , q = (qc, qd) ∈ Q,
(1) V (x) ≥ 0 and V −1(0) ⊆ ∂X .

(2) There exists c > 0 such that grad(V )(x)fqc(x) < −c,
(3) For all u ∈ Ec, if x ∈ int X , then V (Ru,q(x)) ≤ V (x), and
if x ∈ ∂X , then Ru,q(x) ∈ X0.
It then follows that R(H) is finite.
Computation Notice that if the reset maps, flows of the vector
fields (as in Definition 17), and the functions hq,e defining
guards are (numerically) computable then so is H∆. However,
the computational complexity can get large as ∆ decreases.
Assumption 3. The reset maps of H are affine in int X , the
vector fields are of L’ure-type, the state-space is a polyhedron,
and the maps defining the guards are affine, i.e.

X = {x ∈ Rn | nT
i x− bi ≤ 0, i = 1, 2, . . . ,K}

Ru,q(x) = Mu,qx + bu,q, ∀x ∈ int X
hq,e(x) = gT

q,ex + dq,e, ∀x ∈ Rn

fqc(x) = Aqcx +
m∑

j=1

Bqc,jφqc,j(rT
qc,jx), ∀x ∈ Rn

µ1σ + γ1 ≤ φqc,j(σ) ≤ µ2σ + γ2, ∀σ ∈ R
for matrices Mu,q, Aqc ∈ Rn×n, vectors bu,q, rqc,j , Bqc,j , gq,e,
ni ∈ Rn, and scalars dq,e, bi, µ1, µ2, γ1, γ2 ∈ R, q =
(qc, qd) ∈ Q, e ∈ Ei ∪ Eo, u ∈ Ec, i = 1, 2, . . . ,K,
j = 1, 2, . . . ,m. The maps φqc,j : R → R, j = 1, 2, . . . ,m
are piecewise-affine, continuous, globally Lipschitz.
If H satisfies Assumption 3, then the reset maps and the maps
hq,e are computable. The solution of ż = fqc(z) can be
computed using numerical integration. Hence, if we can detect
reaching the boundary of X , then the flow f t

qc is computable.
In fact, the definition of H∆ can be modified so that it is
enough to detect if the solution of ż = fqc(z) has crossed the
boundary, the precise point where the boundary was crossed
is not needed. The latter is easy if the sign of each nT

i fqc(x),
i = 1, 2, . . . ,K is independent of x. Finiteness of R(H) can
be checked effectively using Theorem 4 and the following.
Proposition 1. Assume that H satisfies Assumption 3. If for
some j ∈ {1, . . . ,K}, c > 0, it holds that for all x ∈ X ,
(1) nT

j (Aqcx +
∑m

l=1 µil
(Bqc,lr

T
qc,lx + γil

Bqc,l)) > c, for any
sequence i1, i2, . . . , im ∈ {1, 2}, and for any qc ∈ Q,
(2) If x ∈ int X , then nT

j (Mu,qx − x + bu,q) ≥ 0, for all
u ∈ Ec, q ∈ Q
then V (x) = (bj − nT

j x) satisfies Theorem 4.

6. ILLUSTRATING EXAMPLE

Below we illustrate the theory by an example related to a
control problem for printers from Petreczky et al. (2008b).
Formal model of the plant We will use the following pa-

rameters, meaning of which is described in Petreczky et al.
(2008b): Fp, Cp, Vmax, Vmin, Tfo, Tpl,max, Tpl,min, A, D. For-
mally, the plant model H is of the form (3). The compo-
nents of H are explained below. The event sets are Ec =
{cFU , cFD, cA, cD}, Eo = {eo,PL}, Ed = {ed,PL}, Ei =
{eNPIF , ei,PL, emin,PL, emax,PL, eFUc}. The discrete state-
space Q = Qc × Qd is defined as follows. Qd is the set
of maps φ : Vard → {True, False}, where Vard =
{SPL,Sr,SFUc}. Qc is the set of all maps φ : Var →
{True, False} where Var = {SFU ,SFD,SA,SD}. I.e. the
elements of Qd and Qc are valuations of predicates from Vard
and Varc respectively. In the sequel, we will write φ(X) in-
stead of φ(X) = True, and ¬φ(X), instead of φ(X) = False
for all φ ∈ Qd, X ∈ Vard, or φ ∈ Qc and X ∈ Varc. The
continuous state-space is X = {x = (P,V,Cfu,T) ∈ R4 |
P ≤ Cp} where P,V,Cfu,T ∈ R are state variables. The



vector fields fqc , qc ∈ Qc and the reset maps Ru,q, q ∈ Q,
u ∈ Ec are as follows. For any x = (P,V,Cfu,T) ∈ X ,

fqc (x) =
[
max{Vmin,V} f2,qc (x) 1 1

]T

f2,qc (x) =

{
Aφmin(x)φmax(x) if qc(SA)
−Dφmin(x)φmax(x) if qc(SD) and qc(SFD)

φmin(x) =


1 if V ∈ (Vmin + ε, +∞)
(V −Vmin)

ε
if V ∈ (Vmin,Vmin + ε]

0 if V ∈ (−∞,Vmin]

φmax(x) =


1 if V ∈ (−∞,Vmax − ε)
(Vmax −V)

ε
if V ∈ [Vmax − ε,Vmax)

0 if V ∈ [Vmax, +∞)

Ru,q(x) =

{
(P,V, 0,T) if u = cFD and P < Cp
(P,V,Cfu,T) if u 6= cFD and P < Cp
(Cp,Vmax,Tfo,Tpl,max) if P = Cp

The state-transition maps δc and δd are such that for each
q1 = (qc

1, q
d
1) ∈ Q, u ∈ Ec, e ∈ Ei ∪ Ed, δc(q1, u) = qc

2

and δd(q1, e) = qd
2 if and only if the following holds.

(qc
2(SFD), qc

2(SFU )) =

{
(True, False) if u = cFD

(False, True) if u = cFU

(qc
1(SFD), qc

1(SFU )) otherwise

(qc
2(SA), qc

2(SD) =

{
(False, True) if u = cD

(True, False) if u = cA

(qc
1(SA), qc

1(SD)) otherwise

qd
2(SPL) =

{
True if e = ed,PL and qd

1(Sr)

qd
1(SPL) otherwise

qd
2(Sr) =

{
True if e = emin,PL and ¬qd

1(Sr)

False if e = emax,PL and qd
1(Sr)

qd
1(Sr) otherwise

qd
2(SFUc) =

{
True if e = eFUc

qd
1(SFUc) otherwise

The readout maps λo and λi are defined as follows; λi(q, ed) =
ei,PL and λo(q, ed) = eo,PL. The guard are defined as follows.
Φq,e ⊆ {x ∈ int X | hq,e(x) = 0}, ∀e ∈ (Ei ∪ Eo) \ {eo,PL, ei,PL},
Φq,eo,P L = Φq,ei,P L = ∅ and Φq,e1 ∩ Φq,e2 = ∅, ∀e1 6= e2 ∈ Ei

hq,eF Uc (x) =

{
(x3 −Tfo} if qc(cFU )
1 otherwise

hq,emin,P L (x) =

{
(x4 −Tpl,min) if ¬qd(Sr) and ¬qd(SPL)
1 otherwise

hq,emax,P L (x) =

{
(x4 −Tpl,max) if ¬qd(SPL) and qd(Sr)
1 otherwise

hq,eNP IF (x) =

{
x1 − Fp if qd(SPL) and

(qc(SFD) or (qc(SFU ) and ¬qd(SFUc)))
1 otherwise

The initial state h0 = (qc
0, q

d
0 , x0) is of the following form.

qc
0(X) = False, X ∈ Varc \ {SFD) and qc

0(SFD) = True

qd(Y ) = False,∀Y ∈ Vard and x0 = (0,Vmax, 0, 0)

Control requirements K = (Ei \ eNPIF )∗ ∪ (Ei \ eNPIF )ω.
Solution It is easy to see that Assumption A.1– A.3 and
Assumption 3 are satisfied for H . We can solve Problem 1 for
H and K above using the procedure outlined in §4. Notice
that H∆ is computable, and R(H) is finite. For the latter,
define X0 = {(Cp,Vmax,Tfo,Tpl,max)}, and define the
map V : X → R as V (x1, x2, x3, x4) = (Cp − x1). It
follows from Proposition 1 that V and X0 satisfy Theorem 4.
In Petreczky et al. (2008b) controllers were synthesized based
on an algorithm and a model related to the one presented above.

7. DISCUSSION AND CONCLUSIONS

We have presented a control problem for a class of hybrid
systems and we have proposed a solution based on computing
finite-state discrete-event abstraction of hybrid systems. We
believe that the results are relevant for practice. Future research
includes extension of the results to other classes of systems and
the study of robustness and computational issues.
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